

Sampsoniones C-H, a Unique Family of Polyprenylated Benzophenone Derivatives with the Novel Tetracyclo[7.3.1.1^{3,11}.0^{3,7}]tetradecane-2,12,14-trione Skeleton, from *Hypericum sampsonii*(Guttiferae)

Li-Hong Hu and Keng-Yeow Sim*

Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 119260

Received 20 October 1998; accepted 3 November 1998

Abstract The structures of sampsoniones C-H, isolated from the aerial parts of *Hypericum sampsonii*, have been elucidated by extensive analysis of 2 D NMR. Sampsoniones C-H are the first polyprenylated benzophenone derivatives with a unique caged tetracyclo[7.3.1.1^{3.11}.0^{3.7}]tetradecane-2,12,14-trione skeleton. © 1999 Elsevier Science Ltd. All rights reserved.

A few structurally complex and biologically active polyprenylated benzophenone derivatives with the rare tricyclo-skeleton have been isolated from Guttiferous plants¹⁻³. Our previous work⁴ on *Hypericum sampsoniii* resulted in the characterization of sampsoniones A and B, with the novel 5-oxatetracyclo-skeleton arising from cyclizations of two prenyl substituents. Continuing investigations on this plant have resulted in the isolation of six new caged compounds, sampsoniones C-H, with an unusual carbotetracyclo-skeleton formed by complex cyclizations of three prenyl substituents.

sampsonione C (1)
$$R=20$$
 $R=22$ $R=2$

Sampsonione C (1) was obtained as a colourless oil (10.5 mg, 0.00021%), $[\alpha]_D^{31.2}$ +13.39° (c, 0.174, CHCl₃). HREIMS indicated a molecular formula of $C_{38}H_{50}O_5$ (m/z 586.36551). The UV spectrum exhibited maxima at 216 (3.73), 242 (3.84), 278 (3.2), 302 (2.65) nm. The IR spectrum showed strong bands for hydroxyl (3565, 3450 cm⁻¹) and carbonyl groups (1734 1697, 1695 and 1685 cm⁻¹). The ¹H and ¹³C NMR data of 1 (Table 1) indicated a close structural similarity to sampsonione A⁴. The ¹³C NMR spectrum of 1 exhibited four signals (δ 206.3, 204.7, 203.9, 192.4 ppm) corresponding to carbonyl groups, while only three were found in sampsonione A. The hemiketal carbon (δ 110.3 ppm) in sampsonione A was replaced by a nonconjugated carbonyl function.

		C(I)			P(4)	9	D(3)	E(3)	G(S)	9) H
Position	Ŧ	ပ္	HMBC	"H	ئ 1	HMBC	ئ	ပ	13Cg	ပ
		808			81.5		808	808	218	118
		203.9			200		203 0	203	1 6	2
		73.1			73.1		73.9	8 69	73.2	74.8
4	2.19 dd (10.9, 6.3)	33.1	3, 5, 6, 7, 14, 22	a 2.27 dd (12.5, 5.7)	31.1	2, 3, 5, 6, 14	34.4	42.7	31.0	27.0
· ea	,		2, 3, 4, 5, 6, 7, 22	B 2.75 dd (12.5, 7.1)		2, 3, 5, 6, 14	:	į		}
. 62	ß 2.48 m	57.5	3, 7, 22, 26	a 2.19 dd (7.2, 5.8)	58.9	3, 6, 7, 22, 23, 24, 25, 26	54.9	217.1	58.9	42.4
		44.8			46.7		44.3	48.0	46.7	44.2
ಶ	a 2.12 m	57.5	2, 5, 6, 8, 14, 25, 26	B 2.29 dd (12.4, 7.4)	54.6	2, 3, 6, 8, 14, 25, 26	57.2	52.4	\$4.6	55.3
8	2.28 m	28.6	3, 10	a 2.04 m	24.7	10, 13	28.9	29.0	24.7	23.5
-	6 1.65 m		6, 7, 10, 13	8 1.77 m	i i	3, 7, 9, 10, 13		2	•	
_	2.12 m	43.8	1, 7, 8, 11, 37, 38	2.08 m	42.3	1 7 11 38	430	43.8	42.2	400
10	a 2.53 m	42.3	8, 11, 12, 14, 27	a 2.49 dd (14.9, 6.8)	35.1	8, 11, 14, 27	42.6	43.0	35.3	35.0
٩	b1.96 d (13.9)		8, 9, 11, 12, 13, 14, 27	b 2.17 dd (14.9, 3.9)		8, 11, 12, 13, 14				}
		689			67.7		68.9	68.5	97.9	67.5
12		204.7			204.4		204.7	204.2	204.3	204.8
		50.7			47.6		50.7	51.1	47.7	47.5
		206.3			205.5		206.2	2056	205.5	203.3
		192.4			192.8		192.4	1020	100.7	50.00
		134.9			134.8		134.8	134 5	1348	134.8
	7.11 d (7.1)	128.8	15, 19	7.07 d (7.8)	128.4	15, 19	128.8	128.9	128.4	128.4
-	7.26 t (7.0)	128.0	16.17	7.28 t (7.5)	128.2	16, 20	127.9	128.0	128.2	128.1
	7.39 (7.3)	131.9	17, 21	7.39 t (7.6)	132.2	17.21	131.3	132.2	132.1	132.1
	7.26 t (7.0)	128.0	16.21	7.28 (7.5)	128.2	16, 20	127.9	128.0	128.2	1281
•	7.11 d (7.1)	128.8	15, 19	7.07 d (7.8)	128.4	15, 19	128.8	128.9	128.4	128.4
		73.2			73.1		145.2		73.1	
	1.38 s	30.0	5, 22, 24	1.35 \$	30.3	5, 22	111.8		30.3	
-	1.32 s	30.0	5, 22, 23	1.35 s	31.6	5, 22	23.8		31.6	
-	1.23 s	27.0	5, 6, 7, 26	1.06 s	26.9	5, 6, 7, 26	26.7	27.5	8.97	20.5
~	0.92 s	28.2	5, 6, 7, 25	1.23 s	27.4	5, 6, 7, 25	27.0	20.7	27.4	28.3
. •	2.56 m	29.3	10, 11, 12, 14, 28, 29	2.60 m	28.9	10, 11, 12, 14, 28, 29	29.3	29.2	29.1	28.9
	5.12 t (7.0)	119.0	30, 31	5.25 t (7.4)	118.7	30, 31	118.9	118.2	118.5	118.9
		138.3			139.0		138.3	139.0	135.3	138.8
-	1.99 m	39.9	28, 29, 31, 32, 33	2.01 m	0 0.0	28, 29, 31	39.5	39.9	26.0	39.9
	1.66 s	16.3	28, 29, 30	1.65 s	16.3	28, 29	16.3	16.4	17.9	16.2
	2.04 m	26.5	30, 33, 34	2.11 ш	26.5	30, 33, 34	26.5	26.5		26.5
	5.06 t (6.9)	124.1	32, 36	5.06 t (5.3)	124.1	32, 36	124.0	123.9		124.1
34		131.3			131.4		131.3	131.4		131.3
	1.66 s	25.6	33, 34, 36	1.65 s	25.7	33, 34, 36	25.6	25.7		25.7
	1.58 s	17.6	33, 34, 35	1.58 s	17.6	33, 34, 35	17.6	17.6		17.6
	1.40 s	22.7	1, 9, 13, 38	1.38 s	22.5	1, 9, 13, 38	22.7	22.8	22.4	22.5
-	146 s	25.2	1, 9, 13, 37	144 •	25.1	1 9 13 37	25.2	26.3	1 34	26.3

Therefore the tetrahydrofuran-ring of sampsonione A was replaced by a cyclopentane-ring in 1, which was supported by the presence of HMBC cross peaks between: (i) the C_4 methylene protons at δ 2.19, 2.50 ppm and the quaternary carbon signals at δ 203.9 ppm (C_2), 73.1 ppm (C_3), 206.3 ppm (C_{14}), the methine carbon signals at δ 57.5 ppm (C_7 and C_7); (ii) the C_7 methine proton at δ 2.12 ppm and the quaternary carbon signals at δ 203.9 ppm (C_7), 44.8 ppm (C_7), 206.3 ppm (C_{14}), the methine carbon signal at δ 57.5 ppm (C_7); (iii) the C_7 methine proton at δ 2.48 ppm and the quaternary carbon signal at δ 73.1 ppm (C_7), the methine carbon signal at δ 57.5 ppm (C_7).

In addition to the main skeleton, other readily identifiable pendant residues were: (a) the gem-dimethyl group $(C_{25} \text{ and } C_{26})$ correlating by HMBC to each other and to C_6 on the main skeleton; (b) the gem-dimethyl group $(C_{37} \text{ and } C_{38})$ correlating by HMBC to each other and to C_{13} on the main skeleton; (c) a geranyl side chain $(C_{27} \text{ to } C_{36})$; (d) a 2-(2'-hydroxy)propyl group $(C_{22} \text{ to } C_{24})$.

The C_{27} methylene protons showed heteronuclear correlation to C_{12} (δ 204.7 ppm), C_{11} (δ 68.9 ppm), C_{14} (δ 206.3 ppm) and C_{10} (δ 42.3 ppm) and NOE interactions with C_{31} methyl, while the C_{28} olefinic proton correlated with C_{30} and showed NOE enhancements with the C_{30} methylene protons. This allowed assignment of a geranyl moiety at C_{11} and revealed that the geometry of the C_{28} - C_{29} olefin was E. HMBC correlations observed between the C_{23} and C_{24} methyls (δ 1.38 and 1.32 ppm) and C_{5} (δ 54.5 ppm), C_{22} (δ 73.2 ppm) established the attachment of the 2-(2'-hydroxy)propyl at C_{5} .

Molecular models disclosed that, by its formation, the tetracyclic system itself sets up the relative configurations at the chiral centres C_1 , C_3 , C_9 and C_{11} . The relative stereochemistry of the remaining chiral carbons at C_5 and C_7 was determined by 2 D NOESY spectra (Figure 1). Cross peaks between the C_7 methine proton (δ 2.12 ppm) and the C_{37} and C_{25} methyl protons (δ 1.40 and 1.23 ppm); the C_{10} methylene proton at δ 2.53 ppm and the C_{38} methyl (δ 1.46 ppm); the C_{10} methylene proton at δ 1.96 ppm and the C_{26} methyl protons (δ 0.92 ppm) established the α configuration of the C_7 methine proton. The 2-(2'-hydroxyl)propyl group at $C_{5\alpha}$ was deduced from the presence of cross peaks between the C_7 methine proton (δ 2.12 ppm) and the C_{23} , C_{24} methyl protons (δ 1.38 and 1.32 ppm); the C_{25} methyl (δ 1.23 ppm) and the C_{23} , C_{24} methyls.

Figure 1. Selected NOE Correlations for Sampsoniones C-H (1-6)

Sampsonione F (4) (54.8 mg, 0.00110%) was isolated as a colourless oil, $[\alpha]_D^{31.2} + 14.52^{\circ}$ (c, 1.096, CHCl₃), with the following spectral characteristics: IR (film) v_{max} 3591, 3409, 1732, 1695, 1691,1686 cm⁻¹; UV (MeOH) λ_{max} (log ϵ) 322 (2.94), 274 (3.61), 240 (4.52), 214 (3.97) nm; ¹H and ¹³C NMR, Table 1. HREIMS indicated a molecular formula of C₃₈H₅₀O₅ (m/z 586.36697). Extensive analyses of 1 D (¹H, ¹³C) and 2 D (¹H-¹H COSY, HMQC, and HMBC) NMR spectra of 4 established that it is a diastereomer of 1.The relative configuration of the $C_{7\beta}$ methine proton and the $C_{5\beta}$ 2-(2'-hydroxyl)propyl group in sampsonione F was established from the 2 D NOESY spectrum (Figure 1), in which the C₇ methine proton (δ 2.29 ppm) was correlated with the C_{26} methyl protons (δ 1.23 ppm) and the C_{10} methylene proton at δ 2.17 ppm; the C_{10} methylene proton at δ 2.49 ppm was correlated with the C₃₈ methyl protons(δ 1.41 ppm); the C₂₆ methyl protons (δ 1.23 ppm) showed correlations with the C₂₃ (δ 1.06 ppm) and C₂₄ (δ 1.23 ppm) methyl protons. Four other isolated analogues, sampsoniones D⁵ (6.6 mg, 0.000132%), E⁶ (7.8 mg, 0.000156%), G⁷ (1.3 mg, 0.000026%), H8 (6.6 mg, 0.000132%), HREIMS [M]⁺ 568.35120, 542.31356, 518.30061, 528.32658, calcd. for C₃₈H₄₈O₄, C₃₅H₄₂O₅, C₃₃H₄₂O₅, C₃₅H₄₄O₄, respectively, had UV and IR spectral features similar to those of 1. A combined analysis of their NMR data (including 1 D and 2 D) showed that sampsoniones D and E have the main skeleton of 1, with the C₇ methine proton at α configuration, while sampsoniones G and H have the main skeleton of 4, with the C₇ methine proton at β configuration. They differ only in the substituents at C₅ and C₁₁. Sampsonione D has a geranyl side chain at C₁₁, a 2-propenyl group at C₅₀; E has a geranyl side chain at C₁₁, a carbonyl function at C₅; G has a 3-methyl-2-butenyl side chain at C₁₁, a 2-(2'-hydroxy)propyl group at C₅₈; H has a geranyl side chain at C11 and no substituents at C5.

Sampsoniones C-H are the first six of polyprenylated benzophenone derivatives possessing a novel rigid caged tetracyclo[7.3.1.1^{3,11}.0^{3,7}]tetradecane-2,12,14-trione skeleton. They are presumably biosynthesized from the biogenetically acceptable intermediate 74, which also leads to sampsoniones A and B. Epoxidation and intramolecular cyclization of 7 afford sampsoniones C (1), F (4) and G (5), which subsequently dehydrate to form sampsonione D (2) and 8. The intermediate 8 undergoes oxidation and reduction to yield sampsoniones E (3) and H (6) (Fig 2).

Figure 2. Possible biosynthesis pathway of sampsoniones C-H

Acknowledgement: We thank the National University of Singapore for a grant (RP950603) for this research.

REFERENCES AND NOTES

- Geneive EH, Helen J, Sean C, Stewart M, William FR, Yang JP. Tetrahedron Lett., 1995, 36, 4575-4578. 1.
- Cecilia MAO, Andre MP, Volker B, Ivo V, Anita JM. Tetrahedron Lett., 1996, 37, 6427-6430.
- Geneive EH, Helen J, Sean C, Stewart M, William FR. Tetrahedron Lett., 1996, 37, 8663-8666.
- Hu LH, Sim KY. Tetrahedron Lett., 1998, 39, 7999-8002.
 Sampsonione D (2): colourless oil; [α]_D³¹² +12.27(c, 0.156, CHCl₃); IR (film) ν_{max} 1736, 1693, 1690, 1687 cm⁻¹; UV (MeOH) λ_{max} (log ε) 306 (2.76), 280 (3.23), 260 (3.62), 240 (3.63), 214 (3.50) nm; ¹H NMR (CDCl₃, 300 MHz): 2.63 (t, 12.6 Hz, 4α), 2.08 (dd, 12.4, 8.8 Hz, 4β), 3.12 (dd, 12.0, 8.9 Hz, 5β), 2.03 (m, 7α), 2.28 (m, 8α), 1.71 (m, 8β), 2.13 (m, 9), 2.52 (dd, 14.0, 8.6 Hz, 10a), 1.88 (d, 14.1 Hz, 10b), 7.11 (2H, d, 7.7 Hz, 17, 21), 7.26 (2 H, t, 7.9 Hz, 18, 20), 7.39 (t, 7.7 Hz, 19), 4.91 (s, 23), 4.84 (s, 23), 1.80 (s, 24), 0.86 (s, 25), 0.93 (s, 26), 2.47 (2 H, t, 5.9 Hz, 27), 5.11 (t, 5.7 Hz, 28), 1.98 (2 H, m, 30), 1.66 (s, 31), 2.03 (2 H, m, 32), 5.05 (t, 4.3 Hz, 33), 1.65 (s, 35), 1.57 (s, 36), 1.40 (s, 37), 1.46 (s,
- Sampsonione E (3): colourless oil; $[\alpha]_0^{31.2}$ 57.69 (c, 0.026, CHCl₃); IR (film) v_{max} 1743, 1735, 1698, 1690, 1687 cm⁻¹; UV (MeOH) λ_{max} (log ε) 306 (3.35), 276 (3.69), 254 (4.07), 246 (4.09), 214 (4.00) nm; ¹H NMR (CDCl₃, 300 MHz): 3.22 (d, 17.7 Hz, 4α), 2.76 (d, 17.7 Hz, 4β), 2.28 (t, 9.6 Hz, 7a), 2.48 (m, 8a), 1.75 (ddd, 15.4, 9.3, 1.2 Hz, 8β), 2.23 (brt, 6.8 Hz, 9), 2.22 (dd, 14.0, 7.3 Hz, 10a), 1.88 (d, 14.1 Hz, 10b), 7.10 (2H, d, 8.0 Hz, 17, 21), 7.27 (2 H, dd, 7.9, 7.0 Hz, 18, 20), 7.41 (t, 7.0 Hz, 19), 1.09 (s, 25), 0.95 (s, 26), 2.54 (2 H, t, m, 27), 5.02 (m, 28), 1.94 (2 H, t, 7.4 Hz, 30), 1.65 (s, 31), 2.00 (2 H, m, 32), 5.02 (m, 33), 1.65 (s, 35), 1.57 (s, 36), 1.47 (s, 37), 1.51 (s, 38).

 7. Sampsonione G (5): colourless oil; $[\alpha]_D^{31.2}$ 10.00 (c, 0.012, CHCl₃); IR (film) ν_{max} 3594, 3411, 1733, 1697, 1690, 1687 cm⁻¹; UV (MeOH) λ_{max}
- (log ε) 320 (3.12), 276 (3.59), 242 (4.63), 214 (4.03) nm; ¹H NMR (CDCl₃, 300 MHz): 2.26 (m, 4α), 2.75 (dd, 13.6, 6.6 Hz, 4β), 2.19 (m, 5α). 2.32 (dd, 12.8, 5.3 Hz, 7β), 2.02 (m, 8α), 1.77 (m, 8β), 2.10 (m, 9), 2.47 (dd, 14.9, 6.6 Hz, 10a), 2.20 (m, 10b), 7.07 (2H, d, 6.1 Hz, 17, 21), 7.29 (2 H, t, 6.3 Hz, 18, 20), 7.39 (t, 6.0 Hz, 19), 1.36 (6 H, 23, 24), 1.22 (s, 25), 1.07 (s, 26), 2.60 (2 H, m, 27), 5.22 (t, 7.5 Hz, 28), 1.73 (2 H, m, 30), 1.67 (s, 31), 1.39 (s, 37), 1.41 (s, 38).
- 8. Sampsonione H (6): colourless oil; [α]₀^{31.2} +5.15 (c, 0.07, CHCl₃); IR (film) ν_{max} 1738, 1694, 1691, 1689 cm⁻¹; UV (MeOH) λ_{max} (log ε) 322 (2.53), 282 (3.10), 262 (3.39), 242 (3.43), 216 (3.30) nm; H NMR (CDCl₃, 300 MHz): 2.37 (dd, 13.7, 6.7 Hz, 4α), 2.43 (dd, 13.7, 7.0 Hz, 4β). 1.72 (m, 5a), 1.92 (m, 7b), 1.92 (m, 8a), 1.72 (m, 8b), 2.07 (m, 9), 2.50 (dd, 14.4, 5.3 Hz, 10a), 2.21 (d, 14.8 Hz, 10b), 7.10 (2H, d, 8.0 Hz, 17, 21), 7.27 (2 H, dd, 7.9, 7.0 Hz, 18, 20), 7.39 (t, 7.0 Hz, 19), 0.95 (s, 25), 1.03 (s, 26), 2.62 (2 H, m, 27), 5.30 (t, 7.4 Hz, 28), 2.06 (2 H, m, 30). 1.67 (s, 31), 2.07 (2 H, m, 32), 5.07 (brs, 33), 1.67 (s, 35), 1.58 (s, 36), 1.39 (s, 37), 1.42 (s, 38).